Abstract
AbstractNatural products are important sources for drug development, and the precise prediction of their structures assembled by modular proteins is an area of great interest. In this study, we introduce DeepT2, an end-to-end, cost-effective, and accurate machine learning platform to accelerate the identification of type II polyketides (T2PKs), which represent a significant portion of the natural product world. Our algorithm is based on advanced natural language processing models and utilizes the core biosynthetic enzyme, chain length factor (CLF or KSβ), as computing inputs. The process involves sequence embedding, data labeling, classifier development, and novelty detection, which enable precise classification and prediction directly from KSβwithout sequence alignments. Combined with metagenomics and metabolomics, we evaluated the ability of DeepT2 and found this model could easily detect and classify KSβeither as a single sequence or a mixture of bacterial genomes, and subsequently identify the corresponding T2PKs in a labeled categorized class or as novel. Our work highlights deep learning as a promising framework for genome mining and therefore provides a meaningful platform for discovering medically important natural products.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献