CRB3 and ARP2/3 regulate cell biomechanical properties to set epithelial monolayers for collective movement

Author:

Massey-Harroche Dominique,Conte Vito,Gouirand Niels,Sebbagh Michäel,Bivic André LeORCID,Bazellières ElsaORCID

Abstract

SummarySeveral cellular processes during morphogenesis, tissue healing or cancer progression involve epithelial to mesenchymal plasticity that leads to collective motion (plasticity?). Even though a rich variety of EMP programs exist, a major hallmark unifying them is the initial breaking of symmetry that modifies the epithelial phenotype and axis of polarity. During this process, the actin cytoskeleton and cellular junctions are extensively remodelled correlating with the build-up of mechanical forces. As the collective migration proceeds, mechanical forces generated by the actin cytoskeleton align with the direction of migration ensuring an organized and efficient collective cell behaviour, but how forces are regulated during the breaking of symmetry at the onset of EMP remains an unaddressed question. It is known that the polarity complex CRB3/PALS1/PATJ, and in particular, CRB3 regulates the organization of the actin cytoskeleton associated to the apical domain thus pointing at a potential role of CRB3 in controlling mechanical forces. Whether and how CRB3 influences epithelial biomechanics during the epithelial-mesenchymal plasticity remains, however, largely unexplored. Here, we systematically combine mechanical and molecular analyses to show that CRB3 regulates the biomechanical properties of collective epithelial cells during the initial breaking of symmetry of the EMP. CRB3 interacts with ARP2/3 and controls the remodelling of actin throughout the monolayer via the modulation of the Rho-/Rac-GTPase balance. Taken together, our results identified CRB3, a polarity protein, as a regulator of epithelial monolayer mechanics during EMP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3