Electrostatic interactions control the adsorption of extracellular vesicles onto supported lipid bilayers

Author:

Ridolfi AndreaORCID,Cardellini JacopoORCID,Gashi Fatlinda,van Herwijnen Martijn J.C.ORCID,Trulsson MartinORCID,Campos-Terán JoséORCID,Wauben Marca H. M.ORCID,Berti DeboraORCID,Nylander TommyORCID,Stenhammar JoakimORCID

Abstract

AbstractCommunication between cells located in different parts of an organism is often mediated by membrane-enveloped nanoparticles, such as extracellular vesicles (EVs). EV binding and cell uptake mechanisms depend on the heterogeneous composition of the EV membrane. From a colloidal perspective, the EV membrane interacts with other biological interfaces via both specific and non-specific interactions, where the latter include long-ranged electrostatic and van der Waals forces, and short-ranged repulsive “steric-hydration” forces. While electrostatic forces are generally exploited in most EV immobilization protocols, the roles played by various colloidal forces in controlling EV adsorption on surfaces have not yet been thoroughly addressed. In the present work, we study the interaction and adsorption of EVs with supported lipid bilayers (SLBs) carrying different surface charge densities. By probing the EV-SLB interaction using quartz crystal microbalance with dissipation monitoring (QCM-D) and confocal laser scanning microscopy (CLSM), we demonstrate that EV adsorption onto lipid membranes can be controlled by varying the strength of electrostatic forces. We then model the observed phenomena within the framework of nonlinear Poisson-Boltzmann theory. Modelling results confirm the experimental observations and highlight the crucial role played by attractive electrostatics in EV adsorption onto lipid membranes. Our results provide new fundamental insights into EV-membrane interactions and could be useful for developing novel EV separation and immobilization strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3