An efficient induction method for human spinal lower motor neurons and high-throughput image analysis at the single cell level

Author:

Setsu Selena,Morimoto Satoru,Nakamura Shiho,Ozawa Fumiko,Tomari YukihideORCID,Okano HideyukiORCID

Abstract

SummaryThis study presents a newly developed method to rapidly and efficiently induce human spinal lower motor neurons (LMNs) from induced pluripotent stem cells (iPSCs) for elucidation of the amyotrophic lateral sclerosis (ALS) pathomechanism and drug screening. Previous methods had several limitations such as poor efficiency and low purity of LMN induction and labor intensiveness of the induction and evaluation procedures. Our new protocol achieved nearly 80% induction efficiency in only 2 weeks by combining a small molecule-based approach and transduction of transcription factors. To overcome cellular heterogeneity, we analyzed morphology and viability of iPSC-derived LMNs on a cell-by-cell basis using time-lapse microscopy and machine learning, thus establishing a highly accurate pathophysiological evaluation system. Our rapid, efficient, and simplified protocol and single cell-based evaluation method allow the conduct of large-scale analysis and drug screening using iPSC-derived motor neurons.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3