ER Stress Impedes Regulated Secretion by Governing Key Exocytotic and Granulogenic Molecular Switches

Author:

Mukherjee Mohima,Mukherjee Chandramouli,Ghosh Vinayak,Jain Aamna,Sadhukhan Souren,Dagar Sushma,Sahu Bhavani ShankarORCID

Abstract

AbstractDense core vesicles (DCVs) and synaptic vesicles (SVs) are specialised secretory vesicles (SSVs) in neurons/neuroendocrine cells harbouring cargo whose abnormal release is associated with pathophysiology. Endoplasmic Reticulum (ER) stress and inter-organellar communication are also associated with disease biology. In pursuit of investigating the cell physiological consequences arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using Thapsigargin (Tg). DCV exocytosis was severely compromised in ER-stressed PC12 cells, reversed by Docosahexaenoic acid (DHA). Experiments with Tunicamycin(Tm), an independent ER stressor, yielded similar results. Concurrently, ER stress caused impaired DCV exocytosis also in INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4 (a well-known CREB inhibitor) and its transcriptional regulator CREB (also known to regulate key granulogenic players Chromogranin A, Secretogranin II). Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key ‘exocytotic’ and ‘granulogenic’ switches regulated via the CREB/ATF4/eIF2α axis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3