Author:
Laban Hebatullah,Frömel Timo,Fleming Ingrid,Benz Peter M.
Abstract
AbstractMacrophage polarization plays an important role in tissue regeneration. Numerous factors and signaling molecules affect polarization processes. Here we investigated the consequences of the genetic deletion of vasodilator-stimulated phosphoprotein (VASP), which increases macrophage M1 polarization through augmented signal transducer and activator of transcription 1 (STAT1) signaling, and AMP-activated protein kinase (AMPK), which attenuates inflammation by inhibiting STAT1 expression and signaling. While a basal activity of AMPK (phosphorylation on Thr172) was detected in macrophages from wild-type mice, AMPK phosphorylation was significantly reduced in VASP-deficient M1 macrophagesin vitroand the expression of the pro-inflammatory cytokines TNFα and IL-1β was increased in these cells. Consistent with the role of AMPK in macrophage phagocytosis, VASP-/-macrophage phagocytosis was also significantly impaired. Interestingly, impaired phagocytosis could be rescued by exogenous activation of AMPK. Mechanistically, we found that VASP binds directly to protein phosphatase 1 regulatory subunit 6 (PP1-R6) and we hypothesize that VASP-binding to PP1- R6/PP1 limits the PP1-dependent de-phosphorylation of AMPK in wild-type cells. Conversely, AMPK dephosphorylation by the PP1-R6/PP1 complex is enhanced in the absence of VASP. In summary, we have identified a link between VASP and AMP-activated protein kinase (AMPK) activity, which may contribute to the pro-inflammatory phenotype of VASP-deficient macrophages.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献