Author:
Zink Joana,Frömel Timo,Boon Reinier A.,Fleming Ingrid,Benz Peter M.
Abstract
AbstractEndothelial tip cells are essential for VEGF-induced angiogenesis, but underlying mechanisms are elusive. Endothelial-specific deletion of EVL, a member of the mammalian Ena/VASP protein family, reduced the expression of the tip cell marker protein endothelial cell specific molecule-1 (Esm1) and compromised the radial sprouting of the vascular plexus in the postnatal mouse retina. The latter effects could at least partly be attributed to reduced VEGF receptor 2 (VEGFR2) internalization and signaling but the underlying mechanisms(s) are not fully understood. In the present study, we revealed that the expression of the long non-coding RNA H19 was significantly reduced in endothelial cells from postnatal EVL-/-mice and in siRNA-transfected human endothelial cells under hypoxic conditions. H19 was recently shown to promote VEGF expression and bioavailability via Esm1 and hypoxia inducible factor 1α (HIF-1α). Similar to EVL-/-mice, the radial outgrowth of the vascular plexus was significantly delayed in the postnatal retina of H19-/-mice. In summary, our data suggests that loss of EVL not only impairs VEGFR2 internalization and downstream signaling, but also impairs VEGF expression and bioavailability in the hypoxic retina via downregulation of lncRNA H19.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献