Context-Aware Amino Acid Embedding Advances Analysis of TCR-Epitope Interactions

Author:

Zhang PengfeiORCID,Bang Seojin,Cai Michael,Lee HeewookORCID

Abstract

AbstractAccurate prediction of binding interaction between T cell receptors (TCRs) and host cells is fundamental to understanding the regulation of the adaptive immune system as well as to developing data-driven approaches for personalized immunotherapy. While several machine learning models have been developed for this prediction task, the question of how to specifically embed TCR sequences into numeric representations remains largely unexplored compared to protein sequences in general. Here, we investigate whether the embedding models designed for protein sequences, and the most widely used BLOSUM-based embedding techniques are suitable for TCR analysis. Additionally, we present our context-aware amino acid embedding models (catELMo) designed explicitly for TCR analysis and trained on 4M unlabeled TCR sequences with no supervision. We validate the effectiveness ofcatELMoin both supervised and unsupervised scenarios by stacking the simplest models on top of our learned embeddings. For the supervised task, we choose the binding affinity prediction problem of TCR and epitope sequences and demonstrate notably significant performance gains (up by at least 14% AUC) compared to existing embedding models as well as the state-of-the-art methods. Additionally, we also show that our learned embeddings reduce more than 93% annotation cost while achieving comparable results to the state-of-the-art methods. In TCR clustering task (unsupervised),catELMoidentifies TCR clusters that are more homogeneous and complete about their binding epitopes. Altogether, ourcatELMotrained without any explicit supervision interprets TCR sequences better and negates the need for complex deep neural network architectures.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3