Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools

Author:

Biderman DanORCID,Whiteway Matthew RORCID,Hurwitz ColeORCID,Greenspan Nicholas,Lee Robert S,Vishnubhotla AnkitORCID,Warren RichardORCID,Pedraja FedericoORCID,Noone DillonORCID,Schartner MichaelORCID,Huntenburg Julia MORCID,Khanal AnupORCID,Meijer Guido TORCID,Noel Jean-PaulORCID,Pan-Vazquez AlejandroORCID,Socha Karolina ZORCID,Urai Anne EORCID,Cunningham John PORCID,Sawtell NathanielORCID,Paninski LiamORCID,

Abstract

AbstractPose estimation algorithms are shedding new light on animal behavior and intelligence. Most existing models are only trained with labeled frames (supervised learning). Although effective in many cases, the fully supervised approach requires extensive image labeling, struggles to generalize to new videos, and produces noisy outputs that hinder downstream analyses. We address each of these limitations with a semi-supervised approach that leverages the spatiotemporal statistics of unlabeled videos in two different ways. First, we introduce unsupervised training objectives that penalize the network whenever its predictions violate smoothness of physical motion, multiple-view geometry, or depart from a low-dimensional subspace of plausible body configurations. Second, we design a new network architecture that predicts pose for a given frame using temporal context from surrounding unlabeled frames. These context frames help resolve brief occlusions or ambiguities between nearby and similar-looking body parts. The resulting pose estimation networks achieve better performance with fewer labels, generalize better to unseen videos, and provide smoother and more reliable pose trajectories for downstream analysis; for example, these improved pose trajectories exhibit stronger correlations with neural activity. We also propose a Bayesian post-processing approach based on deep ensembling and Kalman smoothing that further improves tracking accuracy and robustness. We release a deep learning package that adheres to industry best practices, supporting easy model development and accelerated training and prediction. Our package is accompanied by a cloud application that allows users to annotate data, train networks, and predict new videos at scale, directly from the browser.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3