Transcutaneous Spinal Cord Stimulation to Reduce Phantom Limb Pain in People with a Transtibial Amputation

Author:

Dalrymple Ashley NORCID,Fisher Lee EORCID,Weber Douglas JORCID

Abstract

ABSTRACTObjectivePhantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes and F-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating phantom limb pain. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.ApproachWe recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5-day study. We measured pain using the McGill Pain Questionnaire, visual analog scale, and pain pressure threshold test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes and F-waves, respectively. We delivered tSCS for 30 minutes/day for 5 days.Main ResultsAfter 5 days of tSCS, pain scores decreased by clinically-meaningful amounts for all participants from 34.0±7.0 to 18.3±6.8. Two participants had increased pain pressure thresholds across the residual limb (Day 1: 5.4±1.6 lbf; Day 5: 11.4±1.0 lbf). F-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5±6.1 µC) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 days of tSCS, reflex thresholds decreased significantly (38.6±12.2 µC; p<0.001).SignificanceOverall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3