Abstract
ABSTRACTObjectiveThis study aimed to explore sensitive detection methods and deep learning (DL)-based classification for pathological high-frequency oscillations (HFOs)MethodsWe analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent resection after chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for pathological features based on spike association and time-frequency plot characteristics. A DL-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method.ResultsThe MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors exhibited the most pathological features. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification.ConclusionsHFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs.SignificanceEnhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes.HIGHLIGHTSHFOs detected by the MNI detector showed different traits and higher pathological bias than those detected by the STE detectorHFOs detected by both MNI and STE detectors (the Intersection HFOs) were deemed the most pathologicalA deep learning-based classification was able to distill pathological HFOs, regard-less of the initial HFO detection methods
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献