A machine learning approach to predict drug-induced autoimmunity using transcriptional data

Author:

Smith Gemma L.ORCID,Walker Ieuan G.ORCID,Aubareda Anna,Chapman Michael A.

Abstract

AbstractDrug-induced autoimmunity (DIA) is an idiosyncratic adverse drug reaction. Although first reported in the mid-1940’s, the mechanisms underlying DIA remain unclear, and there is little understanding of why it is only associated with some drugs. Because it only occurs in a small number of patients, DIA is not normally detected until a drug has reached the market. We describe an ensemble machine learning approach using transcriptional data to predict DIA. The genes comprising the signature implicate dysregulation of cell cycling or proliferation as part of the mechanism of DIA. This approach could be adapted by pharmaceutical companies as an additional preclinical safety screen, reducing the risk of drugs with the potential to cause autoimmunity reaching the market.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3