Abstract
AbstractHuman visual performance for basic visual dimensions (e.g., contrast sensitivity and acuity) peaks at the fovea and decreases with eccentricity. The eccentricity effect is related to the larger surface area of the visual cortex corresponding to the fovea, but it is unknown if differential feature tuning contributes to this eccentricity effect. Here, we investigated two system-level computations underlying the eccentricity effect: featural representation (tuning) and internal noise. Observers (both sexes) detected a Gabor embedded in filtered white noise which appeared at the fovea or one of four perifoveal locations. We used psychophysical reverse correlation to estimate the weights assigned by the visual system to a range of orientations and spatial frequencies (SFs) in noisy stimuli, which are conventionally interpreted as perceptual sensitivity to the corresponding features. We found higher sensitivity to task-relevant orientations and SFs at the fovea than the perifovea, and no difference in selectivity for either orientation or SF. Concurrently, we measured response consistency using a double-pass method, which allowed us to infer the level of internal noise by implementing a noisy observer model. We found lower internal noise at the fovea than perifovea. Finally, individual variability in contrast sensitivity correlated with sensitivity to and selectivity for task-relevant features as well as with internal noise. Moreover, the behavioral eccentricity effect mainly reflects the foveal advantage in orientation sensitivity compared to other computations. These findings suggest that the eccentricity effect stems from a better representation of task-relevant features and lower internal noise at the fovea than at the perifovea.SignificancePerformance in many visual tasks worsens with eccentricity. Many studies attribute this eccentricity effect to retinal and cortical factors, like higher cone density and a larger cortical surface area representing the foveal than peripheral locations. We investigated whether system-level computations for task-relevant visual features also underlie this eccentricity effect. Measuring contrast sensitivity in visual noise, we showed that the fovea better represents task-relevant orientation and spatial frequency and has lower internal noise than the perifovea, and that individual variability in these two computations correlates with that in performance. These findings reveal that both representations of these basic visual features and internal noise underlie the difference in performance with eccentricity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献