Nucleosome reorganisation in breast cancer tissues

Author:

Jacob Divya R.,Guiblet Wilfried M.,Mamayusupova Hulkar,Shtumpf MariyaORCID,Ciuta Isabella,Ruje Luminita,Gretton Svetlana,Bikova Milena,Correa Clark,Dellow Emily,Agrawal Shivam P.,Shafiei Navid,Drobysevskaja Anastasija,Armstrong Chris M.,Lam Jonathan D. G.,Vainshtein YevhenORCID,Clarkson Christopher T.,Thorn Graeme J.ORCID,Sohn Kai,Pradeepa Madapura M.ORCID,Chandrasekharan Sankaran,Brooke Greg N.ORCID,Klenova ElenaORCID,Zhurkin Victor B.ORCID,Teif Vladimir B.ORCID

Abstract

AbstractNucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. Here we have generated high resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ∼20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. In addition, tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. These effects were correlated with gene activity, DNA sequence repeats abundance, differential DNA methylation and binding of linker histone variants H1.4 and H1X. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient stratification and monitoring using liquid biopsies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3