Structure-Property-Processing Correlations of Graphene Bioscaffolds for Proliferation and Differentiation of C2C12 Cells

Author:

Karriem Lynn,Eixenberger Joshua,Frahs Stephanie,Convertino Domenica,Webb Tyler,Pandhi Twinkle,McLaughlin Kari,Enrriques Ashton,Davis Paul,Subbaraman Harish,Colletti Camilla,Oxford Julia T.,Estrada David

Abstract

AbstractGraphene – an atomically thin layer of carbon atoms arranged in a hexagonal lattice – has gained interest as a bioscaffold for tissue engineering due to its exceptional mechanical, electrical, and thermal properties. Graphene’s structure and properties are tightly coupled to synthesis and processing conditions, yet their influence on biomolecular interactions at the graphene-cell interface remains unclear. In this study, C2C12 cells were grown on graphene bioscaffolds with specific structure–property– processing–performance (SP3) correlations. Bioscaffolds were prepared using three different methods - chemical vapor deposition (CVD), sublimation of silicon carbide (SiC), and printing of liquid phase exfoliated graphene. To investigate the biocompatibility of each scaffold, cellular morphology and gene expression patterns were investigated using the bipotential mouse C2C12 cell line. Using a combination of fluorescence microscopy and qRT-PCR, we demonstrate that graphene production methods determine the structural and mechanical properties of the resulting bioscaffold, which in turn determine cell morphology, gene expression patterns, and cell differentiation fate. Therefore, production methods and resultant structure and properties of graphene bioscaffolds must be chosen carefully when considering graphene as a bioscaffold for musculoskeletal tissue engineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3