Pulmonary Hypertension Classification using Artificial Intelligence and Chest X-Ray:ATA AI STUDY-1

Author:

Kıvrak TarıkORCID,Yagmur Burcu,Erken Hilal,Kocakaya Derya,Tuncer Turker,Doğan Şengül,Yaman Orhan,Sinan Umit Yasar,Sekerci Sena Sert,Yayla Cagri,Iyigun Ufuk,Kis Mehmet,Karaca Ozkan,Yesil Emrah,Yuce Ersoy Elif Ilkay,Tak Bahar Tekin,Oz Ahmet,Kaplan Mehmet,Ulutas Zeynep,Aslan Gamze Yeter,Eren Nihan Kahya,Turhan Caglar Fatma Nihan,Solmaz Hatice,Ozden Ozge,Gunes Hakan,Kocabas Umut,Yenercag Mustafa,Isık Omer,Yesilkaya Cem,Kaya Ali Nail,Omur Sefa Erdi,Sahin Anil,In Erdal,Berber Nurcan Kırıcı,Dogan Cigdem Ileri,Poyraz Fatih,Kaya Emin Erdem,Gumusdag Ayca,Kumet Omer,Kaya Hakki,Sarikaya Remzi,Tan Seda Turkan,Arabaci Hidayet Ozan,Guvenc Rengin Cetin,Yeni Mehtap,Avci Burcak Kılıckıran,Yilmaz Dilek Cicek,Celik Ahmet,Ekici Berkay,Erkan Aycan Fahri,Baris Veysel Ozgur,Seker Taner,Böyük Ferit,Can Mehmet Mustafa,Gungor Hasan,Simsek Hakki,Yildizeli Bedrettin,Kobat Mehmet Ali,Akbulut Mehmet,Zoghi Mehdi,Kozan Omer

Abstract

AbstractAn accurate diagnosis of pulmonary hypertension (PH) is crucial to ensure that patients receive timely treatment. One of the used imaging models to detect pulmonary hypertension is the X-ray. Therefore, a new automated PH-type classification model has been presented to depict the separation ability of deep learning for PH types. We retrospectively enrolled 6642 images of patients with PH and the control group. A new X-ray image dataset was collected from a multicentre in this work. A transfer learning-based image classification model has been presented in classifying PH types. Our proposed model was applied to the collected dataset, and this dataset contains six categories (five PH and a non-PH). The presented deep feature engineering (computer vision) model attained 86.14% accuracy on this dataset. According to the extracted ROC curve, the average area under the curve rate has been calculated at 0.945. Therefore, we believe that our proposed model can easily separate PH and non-PH X-ray images.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3