Structural complexity of brain regions in mild cognitive impairment and Alzheimer’s disease

Author:

Tibon Roni,Madan Christopher R.ORCID,Vaghari Delshad,Reyes-Aldasoro Constantino Carlos

Abstract

AbstractEarly detection of Alzheimer’s disease (AD) has been a major focus of current research efforts to guide interventions at the earliest stages of the disease. Subtle changes to the brain might be observed with neuroimaging techniques, even before symptoms surface. We interrogated brain images obtained with Magnetic Resonance Imaging (MRI) from two large-scale dementia datasets (namely, ADNI and BioFIND) to establish the utility of fractal dimensionality (FD)—a relatively understudied measure that estimates the complexity of 3D structures (in this case, brain regions)—for the detection of AD. We show that FD can be used to detect group differences between patients and healthy controls, with the former showing significantly reduced complexity across multiple brain regions. Furthermore, these measures were successful when used as features for individual-based classification and were highly consistent across the two datasets. Finally, the contribution of specific brain regions to individual-based classification adhered to previous literature on the properties of the brain’s memory network. Taken together, the study offers novel and interpretable evidence for the utility of FD for the detection of AD.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Bishop, C.M ., 2006. Pattern Recognition and Machine Learning. Springer: New York.

2. Alzheimer’s disease;The Lancet,2006

3. Borchert, R. , Azevedo, T. , Badhwar, A. , Bernal, J. , Betts, M. , Bruffaerts, R. , Burkhart, M.C. , Dewachter, I. , Gellersen, H.M. , Low, A. , Machado, L. , Madan, C.R. , Malpetti, M. , Mejia, J. , Michopoulou, S. , Muñoz-Neira, C. , Peres, M. , Phillips, V. , Ramanan, S. , Tamburin, S. , Tantiangco, H. , Thakur, L. , Tomassini, A. , Vipin, A. , Tang, E. , Newby, D. , Ranson, J. , Llewellyn, D.J. , Veldsman, M. , Rittman, T ., 2021. Artificial intelligence for diagnosis and prognosis in neuroimaging for dementia; a systematic review. https://doi.org/10.1101/2021.12.12.21267677

4. Modified MRI Anonymization (De-Facing) for Improved MEG Coregistration;Bioengineering,2022

5. Buitinck, L. , Louppe, G. , Blondel, M. , Pedregosa, F. , Mueller, A. , Grisel, O. , Niculae, V. , Prettenhofer, P. , Gramfort, A. , Grobler, J. , Layton, R. , Vanderplas, J. , Joly, A. , Holt, B. , Varoquaux, G ., 2013. API design for machine learning software: experiences from the scikit-learn project. https://doi.org/10.48550/arXiv.1309.0238

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3