Research Letter: Application of GPT-4 to select next-step antidepressant treatment in major depression

Author:

Perlis Roy H.ORCID

Abstract

AbstractIntroductionLarge language models perform well on a range of academic tasks including medical examinations. The performance of this class of models in psychopharmacology has not been explored.MethodChat GPT-plus, implementing the GPT-4 large language model, was presented with each of 10 previously-studied antidepressant prescribing vignettes in randomized order, with results regenerated 5 times to evaluate stability of responses. Results were compared to expert consensus.ResultsAt least one of the optimal medication choices was included among the best choices in 38/50 (76%) vignettes: 5/5 for 7 vignettes, 3/5 for 1, and 0/5 for 2. At least one of the poor choice or contraindicated medications was included among the choices considered optimal or good in 24/50 (48%) of vignettes. The model provided as rationale for treatment selection multiple heuristics including avoiding prior unsuccessful medications, avoiding adverse effects based on comorbidities, and generalizing within medication class.ConclusionThe model appeared to identify and apply a number of heuristics commonly applied in psychopharmacologic clinical practice. However, the inclusion of less optimal recommendations indicates that large language models may pose a substantial risk if routinely applied to guide psychopharmacologic treatment without further monitoring.

Publisher

Cold Spring Harbor Laboratory

Reference10 articles.

1. Performance of ChatGPT on the MCAT: The Road to Personalized and Equitable Premedical Learning

2. Nori H , King N , McKinney SM , Carignan D , Horvitz E. Capabilities of GPT-4 on Medical Challenge Problems. Published online March 20, 2023. Accessed April 11, 2023. https://www.microsoft.com/en-us/research/publication/capabilities-of-gpt-4-on-medical-challenge-problems/

3. Artificial intelligence‐based chatbot patient information on common retinal diseases using ChatGPT

4. Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3