The Heritability of Human Connectomes: a Causal Modeling Analysis

Author:

Chung JaewonORCID,Bridgeford Eric W.,Powell Michael,Pisner Derek,Xu Ting,Vogelstein Joshua T.ORCID

Abstract

AbstractThe heritability of human connectomes is crucial for understanding the influence of genetic and environmental factors on variability in connectomes, and their implications for behavior and disease. However, current methods for studying heritability assume an associational rather than a causal effect, or rely on strong distributional assumptions that may not be appropriate for complex, high-dimensional connectomes. To address these limitations, we propose two solutions: first, we formalize heritability as a problem in causal inference, and identify measured covariates to control for unmeasured confounding, allowing us to make causal claims. Second, we leverage statistical models that capture the underlying structure and dependence within connectomes, enabling us to define different notions of connectome heritability by removing common structures such as scaling of edge weights between connectomes. We then develop a non-parametric test to detect whether causal heritability exists after taking principled steps to adjust for these commonalities, and apply it to diffusion connectomes estimated from the Human Connectome Project. Our findings reveal that heritability can still be detected even after adjusting for potential confounding like neuroanatomy, age, and sex. However, once we address for rescaling between connectomes, our causal tests are no longer significant. These results suggest that previous conclusions on connectome heritability may be driven by rescaling factors. Together, our manuscript highlights the importance for future works to continue to develop data-driven heritability models which faithfully reflect potential confounders and network structure.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. Variation in cancer risk among tissues can be explained by the number of stem cell divisions

2. The genetic interpretation of area under the roc curve in genomic profiling;PLoS genetics,2010

3. Genetic modifiers of sickle cell disease

4. Crispr-cas9-based genome editing in hematological diseases: opportunities and challenges;Molecular Therapy-Methods & Clinical Development,2021

5. Gene therapy for hereditary blindness: Clinical trial of voretigene neparvovec;New England Journal of Medicine,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3