Egocentric cues influence the spatial memory of landmark configurations for memory-guided actions

Author:

Forster Pierre-Pascal,Fiehler Katja,Karimpur Harun

Abstract

AbstractAllocentric and egocentric reference frames are used to determine the spatial position of action targets in reference to objects in the environment, i.e., landmarks (allocentric), or the observer (egocentric). Previous research investigated reference frames in isolation, for example, by shifting landmarks relative to the target and asking participants to reach to the remembered target location. Systematic reaching errors were found in the direction of the landmark shift and used as a proxy for allocentric spatial coding. Here we examined the interaction of both allocentric and egocentric reference frames by shifting the landmarksas well asthe observer. We asked participants to encode a 3D configuration of balls, and to reproduce this configuration from memory after a short delay followed by a landmark or observer shift. We also manipulated the number of landmarks to test its effect on the use of allocentric and egocentric reference frames. Shifting the observer resulted in larger configurational errors. In addition, an increase in the number of landmarks led to a stronger reliance on allocentric cues and a weaker contribution of egocentric cues. In sum, our results highlight the important role of egocentric cues for allocentric spatial coding in the context of memory-guided actions.New & NoteworthyObjects in our environment are coded relative to each other (allocentrically) and are thought to serve as independent and reliable cues (landmarks) in the context of unreliable egocentric signals. Contrary to this assumption, we demonstrate that egocentric cues alter the spatial memory of landmark configurations, which could reflect recently discovered interactions between allocentric and egocentric neural processing pathways. Further, additional landmarks lead to a higher contribution of allocentric and a lower contribution of egocentric cues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3