Abstract
Many biological functions and dysfunctions rely on two fundamental processes, molecular assembly and the formation of condensed phases such as biomolecular condensates. Condensed phases generally form via phase separation, while molecular assemblies are clusters of molecules of various sizes, shapes, and functionality. We developed a theory that relies on thermodynamic principles to understand the interplay between molecular assembly and phase separation. We propose two prototypical classes of protein interactions and characterize their different equilibrium states and relaxation dynamics. We obtain results consistent with recent in vitro experimental observations of reconstituted proteins, including anomalous size distribution of assemblies, the gelation of condensed phases, and the change in condensate volume during ageing. Our theory provides the framework to unravel the mechanisms underlying physiological assemblies essential for cellular function, and aberrant assemblies that are associated with several neurodegenerative disorders.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献