The condition for dynamic stability in humans walking with feedback control

Author:

Reimann HendrikORCID,Bruijn Sjoerd M.ORCID

Abstract

AbstractThe walking human body is mechanically unstable. Loss of stability and falling is more likely in certain groups of people, such as older adults or people with neuromotor impairments, as well as in certain situations, such as when experiencing conflicting or distracting sensory inputs. Stability during walking is often characterized biomechanically, by measures based on body dynamics and the base of support.Neural control of upright stability, on the other hand, does not factor into commonly used stability measures. Here we analyze stability of human walking accounting for both biomechanics and neural control, using a modeling approach. We define a walking system as a combination of biomechanics, using the well known inverted pendulum model, and neural control, using a proportional-derivative controller for foot placement based on the state of the center of mass at midstance. We analyze this system formally and show that for any choice of system parameters there is always one periodic orbit. We then determine when this periodic orbit is stable, i.e. how the neural control gain values have to be chosen for stable walking. Following the formal analysis, we use this model to make predictions about neural control gains and compare these predictions with the literature and existing experimental data. The model predicts that control gains should increase with decreasing cadence. This finding appears in agreement with literature showing stronger effects of visual or vestibular manipulations at different walking speeds.Author summaryThe walking human body is mechanically unstable and humans frequently lose upright stability and fall while walking. Stability of human walking is usually analyzed from a biomechanical perspective. We argue that sensorimotor control is an essential aspect of walking stability. We model a walking system as a combination of inverted pendulum biomechanics and a neural feedback controller for foot placement and analyze the properties of this hybrid dynamical system. We find that there is always exactly one periodic orbit and derive a criterion for the asymptotic stability of this periodic orbit. This analytic criterion allows us to characterize the region in the parameter space where the walking system is stable. We use these theoretical results to analyze stability of human walking depending on different sensorimotor control gains. The model predicts that control gains should be larger for slower-paced walking, which is partially consistent with the available experimental data.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3