The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D Convolutional Neural Networks

Author:

Cali Ryan J.ORCID,Bhatt Ravi R.,Thomopoulos Sophia I.ORCID,Gadewar ShrutiORCID,Gari Iyad BaORCID,Chattopadhyay TamoghnaORCID,Jahanshad NedaORCID,Thompson Paul M.,

Abstract

AbstractIn brain imaging research, it is becoming standard practice to remove the face from the individual’s 3D structural MRI scan to ensure data privacy standards are met. Face removal - or ‘defacing’ - is being advocated for large, multi-site studies where data is transferred across geographically diverse sites. Several methods have been developed to limit the loss of important brain data by accurately and precisely removing non-brain facial tissue. At the same time, deep learning methods such as convolutional neural networks (CNNs) are increasingly being used in medical imaging research for diagnostic classification and prognosis in neurological diseases. These neural networks train predictive models based on patterns in large numbers of images. Because of this, defacing scans could remove informative data. Here, we evaluated 4 popular defacing methods to identify the effects of defacing on ‘brain age’ prediction – a common benchmarking task of predicting a subject’s chronological age from their 3D T1-weighted brain MRI. We compared brain-age calculations using defaced MRIs to those that were directly brain extracted, and those with both brain and face. Significant differences were present when comparing average per-subject error rates between algorithms in both the defaced brain data and the extracted facial tissue. Results also indicated brain age accuracy depends on defacing and the choice of algorithm. In a secondary analysis, we also examined how well comparable CNNs could predict chronological age from the facial region only (the extracted portion of the defaced image), as well as visualize areas of importance in facial tissue for predictive tasks using CNNs. We obtained better performance in age prediction when using the extracted face portion alone than images of the brain, suggesting the need for caution when defacing methods are used in medical image analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3