Collecting-Gathering Biophysics of the BlackwormL. variegatus

Author:

Tuazon HarryORCID,Nguyen ChantalORCID,Kaufman EmilyORCID,Tiwari IshantORCID,Bermudez Jessica,Chudasama Darshan,Peleg OritORCID,Bhamla M. SaadORCID

Abstract

AbstractMany organisms exhibit collecting and gathering behaviors as a foraging and survival method. Certain benthic macroinvertebrates are classified as collector-gatherers due to their collection of particulate matter as a food source, such as the aquatic oligochaeteLumbriculus variegatus(California blackworms). Blackworms demonstrate the ability to ingest organic and inorganic materials, including microplastics, but previous work has only qualitatively described their possible collecting behaviors for such materials. The mechanism through which blackworms consolidate discrete particles into a larger clumps remains unexplored quantitatively. By analyzing a group of blackworms in a large arena with an aqueous algae solution, we discover that their relative collecting efficiency is proportional to population size. Examining individual blackworms under a microscope reveals that both algae and microplastics physically adhere to the worm’s body due to external mucus secretions, which cause the materials to clump around the worm. We observe that this clumping reduces the worm’s exploration of its environment, potentially due to thigmotaxis. To validate the observed biophysical mechanisms, we create an active polymer model of a worm moving in a field of particulate debris with a short-range attractive force on its body to simulate its adhesive nature. We find that the attractive force increases gathering efficiency. This study offers insights into the mechanisms of collecting-gathering behavior, informing the design of robotic systems, as well as advancing our understanding the ecological impacts of microplastics on benthic invertebrates.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3