Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex

Author:

Brown Haley E.,Weasner Brandon P.,Weasner Bonnie M.,Kumar Justin P.ORCID

Abstract

AbstractA fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs ofDrosophilaare excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are mis-regulated. Here, we show that whenPolycombexpression is reduced, the wing selector genevestigialis ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.Summary StatementHere we describe a novel mechanism by which Pc promotes an eye fate during normal development and how the eye is reprogrammed into a wing in its absence.

Publisher

Cold Spring Harbor Laboratory

Reference153 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3