Probe capture enrichment sequencing ofamoAgenes discloses diverse ammonia-oxidizing archaeal and bacterial populations

Author:

Hiraoka SatoshiORCID,Ijichi Minoru,Takeshima Hirohiko,Kumagai Yohei,Yang Ching-Chia,Makabe-Kobayashi Yoko,Fukuda Hideki,Yoshizawa Susumu,Iwasaki Wataru,Kogure Kazuhiro,Shiozaki Takuhei

Abstract

AbstractThe ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution, and activity of ammonia-oxidizing archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing ofamoAis a widely used method; however, it produces inaccurate results owing to the lack of a ‘universal’ primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low concentration of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realizable sequencing depth. In this study, we developed a method foramoAenrichment sequencing using a hybridization capture technique. Using metagenomic mock community samples, our approach effectively enrichedamoAgenes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic oramoAgene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Database of nitrification and nitrifiers in the global ocean;Earth System Science Data;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3