A methodology combining reinforcement learning and simulation to optimize thein silicoculture of epithelial sheets

Author:

Castrignanò Alberto,Bardini RobertaORCID,Savino AlessandroORCID,Di Carlo StefanoORCID

Abstract

AbstractTissue Engineering (TE) and Regenerative Medicine (RM) aim to replicate and replace tissues for curing disease. However, full tissue integration and homeostasis are still far from reach. Biofabrication is an emerging field that identifies the processes required for generating biologically functional products with the desired structural organization and functionality and can potentially revolutionize the regenerative medicine domain, which aims to use patients’ cells to restore the structure and function of damaged tissues and organs. However, biofabrication still has limitations in the quality of processes and products. Biofabrication processes are often improved empirically, but this is slow, costly, and provides partial results. Computational approaches can tap into biofabrication underused potential, supporting analysis, modeling, design, and optimization of biofabrication processes, speeding up their improvement towards a higher quality of products and subsequent higher clinical relevance. This work proposes a reinforcement learning-based computational design space exploration methodology to generate optimal in-silico protocols for the simulated fabrication of epithelial sheets. The optimization strategy relies on a Deep Reinforcement Learning (DRL) algorithm, the Advantage-Actor Critic, which relies on a neural network model for learning. In contrast, simulations rely on the PalaCell2D simulation framework. Validation demonstrates the proposed approach on two protocol generation targets: maximizing the final number of obtained cells and optimizing the spatial organization of the cell aggregate.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3