Dextromethorphan inhibits collagen transport in the endoplasmic reticulum eliciting an anti-fibrotic response inex-vivoandin vitromodels of pulmonary fibrosis

Author:

Khan Muzamil MORCID,Zukowska Joanna,Jung Juan,Galea GeorgeORCID,Tuechler NadineORCID,Halavatyi AliaksandrORCID,Tischer ChristianORCID,Haberkant PerORCID,Stein FrankORCID,Jung FerrisORCID,Landry JonathanORCID,Khan Arif M.,Oorschot Viola,Becher IsabelleORCID,Neumann BeateORCID,Muley ThomasORCID,Winter HaukeORCID,Duerr JuliaORCID,Mall Marcus AORCID,Savitski MikhailORCID,Pepperkok RainerORCID

Abstract

AbstractExcessive deposition of fibrillar collagen in the interstitial extracellular matrix (ECM) of human lung tissue causes fibrosis, which can ultimately lead to organ failure. Despite our understanding of the molecular mechanisms underlying the disease, a cure for pulmonary fibrosis has not yet been found. In this study, we screened an FDA-approved drug library containing 712 drugs and found that Dextromethorphan (DXM), a cough expectorant, significantly reduces the amount of excess fibrillar collagen deposited in the ECM inin-vitrocultured primary human lung fibroblasts (NHLF) andex-vivocultured human precision-cut lung slice (hPCLS) models of lung fibrosis. Reduced extracellular fibrillar collagen levels in the ECM upon DXM treatment are due to a reversible trafficking inhibition of collagen type I (COL1) in the endoplasmic reticulum (ER) in TANGO1 and HSP47 positive structures. Mass spectrometric analysis shows that DXM causes hyper-hydroxylation of proline and lysine residues on Collagen (COL1, COL3, COL4, COL5, COL7, COL12) and Latent-transforming growth factor beta-binding protein (LTBP1 and LTBP2) peptides coinciding with their secretion block. In addition, thermal proteome profiling of cells treated with DXM shows increased thermal stability of prolyl-hydroxylases such as P3H2, P3H3, P3H4, P4HA1 and P4HA2, suggesting a change in activity. Transcriptome analysis of pro-fibrotic stimulated NHLFs and hPCLS upon DXM treatment showed activation of an anti-fibrotic program via regulation of pathways such as those involved in the MMP-ADAMTS axis, WNT, and fibroblast-to-myofibroblast differentiation. Taken together, the data obtained from both in-vitro and ex-vivo models of fibrogenesis show that Dextromethorphan has potent anti-fibrotic activity by efficient inhibition of COL1 membrane trafficking in the ER.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3