Pulse train gating to improve signal generation forin vivotwo-photon fluorescence microscopy

Author:

Engelmann Shaun A.,Tomar Alankrit,Woods Aaron L.,Dunn Andrew K.

Abstract

AbstractSignificanceTwo-photon microscopy is used routinely forin vivoimaging of neural and vascular structure and function in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using gates of high repetition rate ultrafast pulse trains to increase signal level.AimWe investigate how signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imagingin vivomouse cerebral vasculature.ApproachAn electro-optic modulator is used with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions.ResultsWe find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train. We verify similar increases forin vivoimaging to that observed in cuvette testing. For deep imaging we find pulse gating to result in a 2.95-fold increase in SNR and a 1.37-fold increase in SBR on average when imaging mouse cortical vasculature at depths ranging from 950 μm to 1050 μm.ConclusionsWe demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structure through two-photon microscopy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3