Lesion-specific suppression of YAP/TAZ by biomimetic nanodrug ameliorates atherosclerosis development

Author:

Huang Hui-Chun,Wang Ting-Yun,Rousseau Joshua,Mungaray Michelle,Michaud Chamonix,Plaisier Christopher,Chen Zhen Bouman,Wang Kuei-Chun

Abstract

AbstractAtherosclerosis, characterized by the buildup of lipid-rich plaque on the vessel wall, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a drug delivery vehicle targeting activated endothelium lining the plaque surface and utilizes MoNP to deliver verteporfin (VP), a potent YAP/TAZ inhibitor, for lesion-specific treatment of atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells, and preferentially accumulate in atherosclerotic regions. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this lesion-targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a plaque-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3