Author:
Huang Hui-Chun,Wang Ting-Yun,Rousseau Joshua,Mungaray Michelle,Michaud Chamonix,Plaisier Christopher,Chen Zhen Bouman,Wang Kuei-Chun
Abstract
AbstractAtherosclerosis, characterized by the buildup of lipid-rich plaque on the vessel wall, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a drug delivery vehicle targeting activated endothelium lining the plaque surface and utilizes MoNP to deliver verteporfin (VP), a potent YAP/TAZ inhibitor, for lesion-specific treatment of atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells, and preferentially accumulate in atherosclerotic regions. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this lesion-targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a plaque-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献