Untangling the mechanisms of pulmonary hypertension-induced right ventricular stiffening in a large animal model

Author:

Kakaletsis SotiriosORCID,Malinowski MarcinORCID,Mathur Mrudang,Sugerman Gabriella P.ORCID,Lucy Jeff J.,Snider CalebORCID,Jazwiec Tomasz,Bersi MatthewORCID,Timek Tomasz A.,Rausch Manuel K.ORCID

Abstract

ABSTRACTBackgroundPulmonary arterial hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) remodeling and stiffening; thus, impeding diastolic filling and ventricular function. Multiple mechanisms contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model as well as imaging, experimental, and computational approaches to untangle these mechanisms.MethodsWe induced PHT in eight sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. All findings were compared to 12 control animals. Finally, we used computational modeling to disentangle the relative importance of each stiffening mechanism.ResultsFirst, we found that the RVs of PHT animals thickened most at the base and the free wall. Additionally, we found that PHT induced excessive collagen synthesis and microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with excess collagen synthesis. Finally, our model of normalized RV pressure-volume relationships predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms.ConclusionsIn summary, we found that PHT induces wall thickening, microstructural disorganization, and myocardial stiffening. These remodeling mechanisms were both spatially and directionally dependent. Using modeling, we show that myocardial stiffness is the primary contributor to RV stiffening. Thus, myocardial stiffening may be an important predictor for PHT progression. Given the significant correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for non-invasively estimating myocardial stiffness and predicting PHT outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3