Frontal-midline theta and posterior alpha oscillations index early processing of spatial representations during active navigation

Author:

Du Yu KarenORCID,Liang MingliORCID,McAvan Andrew S.ORCID,Wilson Robert C.ORCID,Ekstrom Arne D.ORCID

Abstract

AbstractPrevious research has demonstrated that humans combine multiple sources of spatial information such as self-motion and landmark cues, while navigating through an environment. However, it is unclear whether this involves comparing multiple representations obtained from different sources during navigation (parallel hypothesis) or building a representation first based on self-motion cues and then combining with landmarks later (serial hypothesis). We tested these two hypotheses (parallel vs. serial) in an active navigation task using wireless mobile scalp EEG recordings. Participants walked through an immersive virtual hallway with or without conflicts between self-motion and landmarks (i.e., intersections) and pointed toward the starting position of the hallway. We employed the oscillatory signals recorded during mobile wireless scalp EEG as means of identifying when participant representations based on self-motion vs. landmark cues might have first emerged. We found that path segments, including intersections present early during navigation, were more strongly associated with later pointing error, regardless of when they appeared during encoding. We also found that there was sufficient information contained within the frontal-midline theta and posterior alpha oscillatory signals in the earliest segments of navigation involving intersections to decode condition (i.e., conflicting vs. not conflicting). Together, these findings suggest that intersections play a pivotal role in the early development of spatial representations, suggesting that memory representations for the geometry of walked paths likely develop early during navigation, in support of the parallel hypothesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3