Attraction of female house mice to male ultrasonic courtship vocalizations depends on their social experience and estrous stage

Author:

Beck Jakob,Wernisch Bettina,Klaus Teresa,Penn Dustin J.,Zala Sarah M.

Abstract

AbstractMale house mice (Mus musculus) produce complex ultrasonic vocalizations (USVs), especially during courtship and mating. Playback experiments suggest that female attraction towards recordings of male USVs depends on their social experience, paternal exposure, and estrous stage. We conducted a playback experiment with wild-derived female house mice(M. musculus musculus)and compared their attraction to male USVs versus the same recording without USVs (background noise). We tested whether female attraction to USVs is influenced by the following factors: (1) social housing (two versus one female per cage); (2) neonatal paternal exposure (rearing females with versus without father); and (3) sexual receptivity (pro-estrous and estrous stages versus non-receptive metestrous and diestrous stages). We found that females showed a significant attraction to male USVs but only if females were housed with another female. Individually housed females showed the opposite response. We found no evidence that pre-weaning exposure to a father influenced females’ preferences, whereas sexual receptivity influenced females’ attraction to male USVs: non-receptive females showed preferences towards male USVs but receptive females did not. Finally, we found that individually housed females were more likely to be in sexually receptive estrous stages than those housed socially, and that attraction to male USVs was most pronounced amongst non-receptive females that were socially housed. Our findings indicate that the attraction of female mice to male USVs depends upon their social experience and estrous stage, though not paternal exposure. They contribute to the growing number of studies showing that social housing and estrous stage influence the behavior of house mice and we show how such unreported variables can contribute to the replication crisis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3