Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments

Author:

Lin Wan-Jung,Pathak AmitORCID

Abstract

AbstractEpithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3