Molecular and organizational diversity intersect to generate functional synaptic heterogeneity within and between excitatory neuronal subtypes

Author:

Medeiros A. T.ORCID,Gratz S.J.ORCID,Delgado A.ORCID,Ritt J.T.ORCID,O’Connor-Giles Kate M.ORCID

Abstract

ABSTRACTSynaptic heterogeneity is a hallmark of complex nervous systems that enables reliable and responsive communication in neural circuits. In this study, we investigated the contributions of voltage-gated calcium channels (VGCCs) to synaptic heterogeneity at two closely relatedDrosophilaglutamatergic motor neurons, one low-and one high-Pr. We find that VGCC levels are highly predictive of heterogeneous release probability among individual active zones (AZs) of low-or high-Prinputs, but not between neuronal subtypes. Underlying organizational differences in the AZ cytomatrix, VGCC composition, and a more compact arrangement of VGCCs alter the relationship between VGCC levels and Prat AZs of low-vs. high-Prinputs, explaining this apparent paradox. We further find that the CAST/ELKS AZ scaffolding protein Bruchpilot differentially regulates VGCC levels at low-and high-PrAZs following acute glutamate receptor inhibition, indicating that synapse-specific organization also impacts adaptive plasticity. These findings reveal intersecting levels of molecular and spatial diversity with context-specific effects on heterogeneity in synaptic strength and plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3