Abstract
ABSTRACTThe products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) have notable bioactivities that mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We developed the first genome-mining pipeline to identify ICS BGCs, locating 3,800 ICS BGCs in 3,300 genomes. Genes in these clusters share promoter motifs and are maintained in contiguous groupings by natural selection. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICSdit1/2gene cluster family (GCF), which was thought to only exist in yeast, is present in ∼30% of all Ascomycetes, including many filamentous fungi. The evolutionary history of theditGCF is marked by deep divergences and phylogenetic incompatibilities that raise questions about convergent evolution and suggest selection or horizontal gene transfers have shaped the evolution of this cluster in some yeast and dimorphic fungi. Our results create a roadmap for future research into ICS BGCs. We developed a website (www.isocyanides.fungi.wisc.edu) that facilitates the exploration, filtering, and downloading of all identified fungal ICS BGCs and GCFs.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献