ATP-induced crosslinking of a biomolecular condensate

Author:

Coupe SebastianORCID,Fakhri NiktaORCID

Abstract

AbstractDEAD-box helicases are important regulators of biomolecular condensates. However, the mechanisms through which these enzymes affect the dynamics of biomolecular condensates have not been systematically explored. Here, we demonstrate the mechanism by which mutation of a DEAD-box helicase’s catalytic core alters ribonucleoprotein condensate dynamics in the presence of ATP. Through altering RNA length within the system, we are able to attribute the altered biomolecular dynamics and material properties to physical crosslinking of RNA facilitated by the mutant helicase. These results suggest the mutant condensates approach a gel transition when RNA length is increased to lengths comparable to eukaryotic mRNA. Lastly, we show that this crosslinking effect is tunable with ATP concentration, uncovering a system whose RNA mobility and material properties vary with enzyme activity. More generally, these findings point to a fundamental mechanism for modulating condensate dynamics and emergent material properties through nonequilibrium, molecular-scale interactions.SignificanceBiomolecular condensates are membraneless organelles which organize cellular biochemistry. These structures have a diversity of material properties and dynamics which are crucial to their function. How condensate properties are determined by biomolecular interactions and enzyme activity remain open questions. DEAD-box helicases have been identified as central regulators of many protein-RNA condensates, though their specific mechanistic roles are ill-defined. In this work, we demonstrate that a DEAD-box helicase mutation crosslinks condensate RNA in an ATP-dependent fashion via protein-RNA clamping. Protein and RNA diffusion can be tuned with ATP concentration, corresponding to an order of magnitude change in condensate viscosity. These findings expand our understanding of control points for cellular biomolecular condensates that have implications for medicine and bioengineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3