3D reconstructions of brain from MRI scans using neural radiance fields

Author:

Iddrisu Khadija,Malec SylwiaORCID,Crimi Alessandro

Abstract

AbstractThe advent of 3D Magnetic Resonance Imaging (MRI) has revolutionized medical imaging and diagnostic capabilities, allowing for more precise diagnosis, treatment planning, and improved patient outcomes. 3D MRI imaging enables the creation of detailed 3D reconstructions of anatomical structures that can be used for visualization, analysis, and surgical planning. However, these reconstructions often require many scan acquisitions, demanding a long session to use the machine and requiring the patient to remain still, with consequent possible motion artifacts. The development of neural radiance fields (NeRF) technology has shown promising results in generating highly accurate 3D reconstructions of MRI images with less user input. Our approach is based on neural radiance fields to reconstruct 3D projections from 2D slices of MRI scans. We do this by using 3D convolutional neural networks to address challenges posed by variable slice thickness; incorporating multiple MRI modalities to ensure robustness and extracting the shape and volumetric depth of both surface and internal anatomical structures with slice interpolation. This approach provides more comprehensive and robust 3D reconstructions of both surface and internal anatomical structures and has significant potential for clinical applications, allowing medical professionals to better visualize and analyze anatomical structures with less available data, potentially reducing times and motion-related issues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3