Abstract
AbstractPlitidepsin, a marine-derived anticancer medicine, is being tested in phase III clinical trials for treating COVID-19. However, the current supply of plitidepsin relies on laborious chemical synthesis processes. Here, we present a new approach that combines microbial and chemical synthesis to produce plitidepsin. We screened a Tistrella strain library to identify a high-yield didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in the highest yield of didemnin B reported in the literature. Next, we developed two straightforward chemical strategies to convert didemnin B to plitidepsin, one of which involved a one-step synthetic route giving over 90% overall yield. We also synthesized two new didemnin analogues and assessed their anticancer and antiviral activities. Our findings offer a practical and sustainable solution for producing plitidepsin and its derivatives, potentially expediting didemnin drug development.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献