Time series analysis of daily data of COVID-19 reported cases in Japan from January 2020 to February 2023

Author:

Sumi AyakoORCID

Abstract

AbstractThis study investigatbed temporal variational structures of the COVID-19 pandemic in Japan using a time series analysis incorporating maximum entropy method (MEM) spectral analysis, which produces power spectral densities (PSDs). This method was applied to daily data of COVID-19 cases in Japan from January 2020 to February 2023. The analyses confirmed that the PSDs for data in both the pre- and post-Tokyo Olympics periods show exponential characteristics, which are universally observed in PSDs for time series generated from nonlinear dynamical systems, including the so-called susceptible/exposed/infectious/recovered (SEIR) model, well-established as a mathematical model of temporal variational structures of infectious disease outbreaks. The magnitude of the gradient of exponential PSD for the pre-Olympics period was smaller than that of the post-Olympics period, because of the relatively high complex variations of the data in the pre-Olympics period caused by a deterministic, nonlinear dynamical system and/or undeterministic noise. A 3-dimensional spectral array obtained by segment time series analysis indicates that temporal changes in the periodic structures of the COVID-19 data are already observable before the commencement of the Tokyo Olympics and immediately after the introduction of mass and workplace vaccination programs. Lessons from theoretical studies for measles control programs may be applicable to COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3