On the dynamic contact angle of capillarity-driven microflows in open channels

Author:

Tokihiro Jodie C.ORCID,McManamen Anika M.ORCID,Phan David N.,Thongpang SanittaORCID,Blake Terence D.ORCID,Theberge Ashleigh B.ORCID,Berthier Jean

Abstract

AbstractThe true value of the contact angle between a liquid and a solid is a thorny problem in capillary microfluidics. The Lucas-Washburn-Rideal (LWR) law assumes a constant contact angle during fluid penetration. However, recent experimental studies have shown lower liquid velocities than predicted by the LWR equation, which are attributed to a velocity-dependent dynamic contact angle that is larger than its static value. Inspection of fluid penetration in closed channels has confirmed that a dynamic angle is needed in the LWR equation.In this work, the dynamic contact angle in an open channel configuration is investigated using experimental data obtained with a range of liquids, aqueous and organic, and a PMMA substrate. We demonstrate that a dynamic contact angle must be used to explain the early stages of fluid penetration, i.e., at the start of the viscous regime, when flow velocities are sufficiently high. Moreover, the open channel configuration, with its free surface, enhances the effect of the dynamic contact angle, making its inclusion even more important. We found that for the liquids in our study, the molecular-kinetic theory (MKT) is the most accurate in predicting the effect of the dynamic contact angle on liquid penetration in open channels.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line

2. On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines

3. Contact-angle hysteresis;Progress in Surface and Membrane Science,1973

4. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten;Colloid Polym. Sci,1918

5. The Dynamics of Capillary Flow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3