Abstract
AbstractThe spinal dorsal horn comprises heterogeneous neuronal populations, that interconnect with one another to form neural circuits modulating various types of sensory information. Decades of evidence has revealed that transcription factors expressed in each neuronal progenitor subclass play pivotal roles in the cell fate specification of spinal dorsal horn neurons. However, the development of subtypes of these neurons is not fully understood in more detail as yet and warrants the investigation of additional transcription factors. In the present study, we examined the involvement of the POU domain-containing transcription factor Brn3a in the development of spinal dorsal horn neurons. Analyses of Brn3a expression in the developing spinal dorsal horn neurons in mice demonstrated that Brn3a was downregulated in majority of the Brn3a-lineage neurons during embryonic stages (Brn3a-transient neurons), whereas a limited population continued to express Brn3a after E18.5 (Brn3a-persistent neurons). Brn3a knockout disrupted the localization pattern of Brn3a-persistent neurons, indicating a critical role of this transcription factor in the development of these neurons. In contrast, Brn3a overexpression in Brn3a-transient neurons directed their localization in a manner similar to that in Brn3a-persistent neurons. Moreover, Brn3a-overexpressing neurons exhibited increased axonal extension to the ventral and ventrolateral funiculi, where the axonal tracts of Brn3a-persistent neurons reside. These results suggest that Brn3a controls the soma localization and axonal extension patterns of Brn3a-persistent spinal dorsal horn neurons.
Publisher
Cold Spring Harbor Laboratory