Temporal Effects of Galactose and Manganese Supplementation on Monoclonal Antibody N-Linked Glycosylation in Fed-Batch and Perfusion Bioreactor Operation

Author:

Gyorgypal AronORCID,Fratz-Berilla EricaORCID,Kohnhorst CaseyORCID,Powers David N.ORCID,Chundawat Shishir P. S.ORCID

Abstract

AbstractMonoclonal antibodies (mAbs) represent a majority of biotherapeutics on the market today. These glycoproteins undergo post-translational modifications, such as N-linked glycosylation, that influence the structural & functional characteristics of the antibody. Glycosylation is a heterogenous post-translational modification that may influence therapeutic glycoprotein stability and clinical efficacy, which is why it is often considered a critical quality attribute (CQA) of the mAb product. While much is known about the glycosylation pathways of Chinese Hamster Ovary (CHO) cells and how cell culture chemical modifiers may influence the N-glycosylation profile of the final product, this knowledge is often based on the final cumulative glycan profile at the end of the batch process. Building a temporal understanding of N-glycosylation and how mAb glycoform composition responds to real-time changes in the biomanufacturing process will help build integrated process models that may allow for glycosylation control to produce a more homogenous product. Here, we look at the effect of specific nutrient feed media additives (e.g., galactose, manganese) and feeding times on the N-glycosylation pathway to modulate N-glycosylation of a Herceptin biosimilar mAb (i.e., Trastuzumab). We deploy the N-GLYcanyzer process analytical technology (PAT) to monitor glycoforms in near real-time for bench-scale bioprocesses operated in both fed-batch and perfusion modes to build an understanding of how temporal changes in mAb N-glycosylation are dependent on specific media additives. We find that Trastuzumab terminal galactosylation is sensitive to media feeding times and intracellular nucleotide sugar pools. Temporal analysis reveals an increased desirable production of single and double galactose-occupied glycoforms over time under glucose-starved fed-batch cultures. Comparable galactosylation profiles were also observed between fed-batch (nutrient-limited) and perfusion (non-nutrient-limited) bioprocess conditions. In summary, our results demonstrate the utility of real-time monitoring of mAb glycoforms and feeding critical cell culture nutrients under fed-batch and perfusion bioprocessing conditions to produce higher-quality biologics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3