Chaotic aging: Intrinsically disordered proteins in aging-related processes

Author:

Manyilov Vladimir D.ORCID,Ilyinsky Nikolay S.ORCID,Nesterov Semen V.,Saqr Baraa M.G.A.,Dayhoff Guy W.,Zinovev Egor V.,Matrenok Simon S.,Fonin Alexander V.,Kuznetsova Irina M.,Turoverov Konstantin K.ORCID,Ivanovich ValentinORCID,Uversky Vladimir N.ORCID

Abstract

1.AbstractThe development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1624 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is comparable to the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the our Aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment and high liquid-liquid phase separation (LLPS) probability has “nuclear” localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, stem cells exhaustion. Some IDPs related to aging with high LLPS propensity were identified as “dangerous” based on the prediction of their propensity to aggregation. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss-of-function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3