Competitive performance and superior noise robustness of a non-negative deep convolutional spiking network

Author:

Rotermund DavidORCID,Garcia-Ortiz AlbertoORCID,Pawelzik Klaus R.ORCID

Abstract

AbstractNetworks of spiking neurons promise to combine energy efficiency with high performance. However, spiking models that match the performance of current state-of-the-art networks while requiring moderate computational resources are still lacking. Here we present an alternative framework to deep convolutional networks (CNNs), the ”Spike by Spike” network (SbS), together with an efficient backpropagation algorithm. SbS implements networks based on non-negative matrix factorisation (NNMF), but uses discrete events as signals instead of real values. On clean data, the performance of CNNs is matched by both NNMF-based networks and SbS. SbS are found to be most robust when the data is corrupted by noise, specially when this noise was not seen before.

Publisher

Cold Spring Harbor Laboratory

Reference13 articles.

1. Adam: A method for stochastic optimization;arXiv preprint,2017

2. Deep learning in neural networks: An overview

3. Efficient computation based on stochastic spikes;Neural computation 19,2007

4. Back-propagation learning in deep spike-by-spike networks;Frontiers in Computational Neuroscience,2019

5. Learning the parts of objects by non-negative matrix factorization;Nature 401,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3