Classifier for the Rapid Simultaneous Determination of Sleep-Wake States and Seizures in Mice

Author:

Harvey Brandon J.ORCID,Olah Viktor J.,Aiani Lauren M.ORCID,Rosenberg Lucie I.ORCID,Pedersen Nigel P.ORCID

Abstract

AbstractIndependent automated scoring of sleep-wake and seizures have recently been achieved; however, the combined scoring of both states has yet to be reported. Mouse models of epilepsy typically demonstrate an abnormal electroencephalographic (EEG) background with significant variability between mice, making combined scoring a more difficult classification problem for manual and automated scoring. Given the extensive EEG variability between epileptic mice, large group sizes are needed for most studies. As large datasets are unwieldy and impractical to score manually, automatic seizure and sleep-wake classification are warranted. To this end, we developed an accurate automated classifier of sleep-wake states, seizures, and the post-ictal state. Our benchmark was a classification accuracy at or above the 93% level of human inter-rater agreement. Given the failure of parametric scoring in the setting of altered baseline EEGs, we adopted a machine-learning approach. We created several multi-layer neural network architectures that were trained on human-scored training data from an extensive repository of continuous recordings of electrocorticogram (ECoG), left and right hippocampal local field potential (HPC-L and HPC-R), and electromyogram (EMG) in the murine intra-amygdala kainic acid model of medial temporal lobe epilepsy. We then compared different network models, finding a bidirectional long short-term memory (BiLSTM) design to show the best performance with validation and test portions of the dataset. The SWISC (sleep-wake and the ictal state classifier) achieved >93% scoring accuracy in all categories for epileptic and non-epileptic mice. Classification performance was principally dependent on hippocampal signals and performed well without EMG. Additionally, performance is within desirable limits for recording montages featuring only ECoG channels, expanding its potential scope. This accurate classifier will allow for rapid combined sleep-wake and seizure scoring in mouse models of epilepsy and other neurologic diseases with varying EEG abnormalities, thereby facilitating rigorous experiments with larger numbers of mice.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. Abadi M et al. (2016) TensorFlow: a system for large-scale machine learning In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pp265–283. USA: USENIX Association.

2. Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus;Epilepsy Behav,2016

3. Robust, automated sleep scoring by a compact neural network with distributional shift correction

4. Chollet F (2018) Keras: The Python Deep Learning library. Astrophysics Source Code Library.

5. Automated sleep staging in rat with a standard spreadsheet

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3