Neural signatures of automatic repetition detection in temporally regular and jittered acoustic sequences

Author:

Ringer HannaORCID,Schröger Erich,Grimm Sabine

Abstract

AbstractDetection of repeating patterns within continuous sound streams is crucial for efficient auditory perception. Previous studies demonstrated a remarkable sensitivity of the human auditory system to periodic repetitions in randomly generated sounds. Automatic repetition detection was reflected in different EEG markers, including sustained activity, neural synchronisation, and event-related responses to pattern occurrences. The current study investigated how listeners’ attention and the temporal regularity of a sound modulate repetition perception, and how this influence is reflected in different EEG markers that were previously suggested to subserve dissociable functions. We reanalysed data of a previous study in which listeners were presented with random acoustic sequences with and without repetitions of a certain sound segment. Repeating patterns occurred either regularly or with a temporal jitter within the sequences, and participants’ attention was directed either towards or away from the auditory stimulation. Across both regular and jittered sequences during both attention and in-attention, pattern repetitions led to increased sustained activity throughout the sequence, evoked a characteristic positivity-negativity complex in the event-related potential, and enhanced inter-trial phase coherence of low-frequency oscillatory activity time-locked to repeating pattern onsets. While regularity only had a minor (if any) influence, attention significantly strengthened pattern repetition perception, which was consistently reflected in all three EEG markers. These findings suggest that the detection of pattern repetitions within continuous sounds relies on a flexible mechanism that is robust against in-attention and temporal irregularity, both of which typically occur in naturalistic listening situations. Yet, attention to the auditory input can enhance processing of repeating patterns and improve repetition detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3