A genetic mosaic mouse model illuminates the pre-malignant progression of basal-like breast cancer

Author:

Zeng JianhaoORCID,Singh Shambhavi,Jiang Ying,Casarez Eli,Atkins Kristen A.,Janes Kevin A.,Zong HuiORCID

Abstract

AbstractBasal-like breast cancer is an aggressive breast cancer subtype, often characterized by a deficiency inBRCA1function and concomitant loss ofp53. While conventional mouse models enable the investigation of its malignant stages, one that reveals its initiation and pre-malignant progression is lacking. Here, we leveraged a mouse genetic system known asMosaicAnalysis withDoubleMarkers (MADM) to generate rare GFP-labeledBrca1,p53-deficient cells alongside RFP+ wildtype sibling cells in the mammary gland. The mosaicism resembles the sporadic initiation of human cancer and enables spatially resolved analysis of mutant cells in comparison to paired wildtype sibling cells. Mammary tumors arising in the model show transcriptomic and genomic characteristics similar to human basal-like breast cancer. Analysis of GFP+ mutant cells at interval time points before malignancy revealed a stepwise progression of lesions from focal expansion to hyper-alveolarization and then to micro-invasion. These stereotyped morphologies indicate the pre-malignant stage irrespective of the time point at which it is observed. Paired analysis of GFP-RFP siblings during focal expansion suggested that hyper-alveolarized structures originate from ductal rather than alveolar cells, despite their morphological similarities to alveoli. Evidence for luminal-to-basal transition at the pre-malignant stages was restricted to cells that had escaped hyper-alveoli and progressed to micro-invasive lesions. Our MADM-based mouse model presents a useful tool for studying the pre-malignancy of basal-like breast cancer.Summary statementA mouse model recapitulates the process of human basal-like breast tumorigenesis initiated from sporadicBrca1, p53-deficient cells, empowering spatially-resolved analysis of mutant cells during pre-malignant progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3