Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG

Author:

Banville HubertORCID,Jaoude Maurice Abou,Wood Sean U.N.ORCID,Aimone Chris,Holst Sebastian C.ORCID,Gramfort AlexandreORCID,Engemann Denis-AlexanderORCID

Abstract

AbstractEEG is an established method for quantifying large-scale neuronal dynamics which enables diverse real-world biomedical applications including brain-computer interfaces, epilepsy monitoring and sleep staging. Advances in sensor technology have freed EEG from traditional laboratory settings, making low-cost ambulatory or at-home assessments of brain function possible. While ecologically valid brain assessments are becoming more practical, the impact of their reduced spatial resolution and susceptibility to noise remain to be investigated. This study set out to explore the potential of at-home EEG assessments for biomarker discovery using the brain age framework and four-channel consumer EEG data. We analyzed recordings from more than 5200 human subjects (18-81 years) during meditation and sleep, focusing on the age prediction task. With cross-validatedR2scores between 0.3 - 0.5, prediction performance was within the range of results obtained by recent benchmarks focused on laboratory-grade EEG. While age prediction was successful from both meditation and sleep recordings, the latter led to higher performance. Analysis by sleep stage uncovered that N2-N3 stages contained most of the signal. When combined, EEG features extracted from all sleep stages gave the best performance, suggesting that the entire night of sleep contains valuable age-related information. Furthermore, model comparisons suggested that information was spread out across electrodes and frequencies, supporting the use of multivariate modeling approaches. Thanks to our unique dataset of longitudinal repeat sessions spanning 153 to 529 days from eight subjects, we finally evaluated the variability of EEG-based age predictions, showing that they reflect both trait- and state-like information. Overall, our results demonstrate that state-of-the-art machine learning approaches based on age prediction can be readily applied to real-world EEG recordings obtained during at-home sleep and meditation practice.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3