Investigating Spatiotemporal Dynamics of Cortical Activity During Language Production in the Healthy and Lesioned Brain

Author:

Mesnildrey QuentinORCID,Aksenov Alexandre,D’Ambra Malo Renaud,Hartwigsen Gesa,Volpert Vitaly,Beuter Anne

Abstract

AbstractEfficient language production requires rapid interactions between different brain areas. These interactions can be severely affected by brain lesions. However, the neurophysiological correlates of the spatiotemporal dynamics during language production are not well understood. The current pilot study explores differences in spatiotemporal cortical dynamics between five subjects with post-stroke aphasia and five control subjects. Electroencephalography was recorded during picture naming in both groups.Average-based analyses (event-related potential (ERP), frequency-specific Global Field Power (GFP)), reveal a strong synchronization of cortical oscillations, especially within the first 600ms post-stimulus, with a time shift between participants with aphasia and control subjects. ERPs and the corresponding brain microstates indicate coordinated brain activity alternating mainly between frontal and occipital zones. This behavior can be described as standing waves between two main sources.At the single-trial scale, traveling waves (TW) were identified from both phase and amplitude analyses. The spatiotemporal distribution of amplitude TW reveals subject-specific organization of several interconnected hubs. In patients with aphasia this spatial organization of TW reveals zones with no TW notably in the vicinity of stroke lesions.The present results provide important hints for the hypothesis that TW contribute to the synchronization and communication between different brain areas especially by interconnecting cortical hubs. Moreover, our findings show that cortical dynamics is affected by brain lesions.Contribution to the FieldSpatiotemporal cortical dynamics of individual trials reveals the presence of phase and amplitude traveling waves.Exploration of traveling waves on the 2D cortical surface reveals the presence of interconnected epicenters or hubs in all subjects.The spatiotemporal distribution of traveling waves shows a higher density in the prefrontal area for people with aphasia than for healthy subjects.For subjects with aphasia, a sparser density of traveling waves is observed in the approximated lesion area.Event-related potential analyses reveal a consistent alternating activity between the frontal and occipital regions.Subjects with aphasia present a larger and/or delayed contribution in the delta range in the GFP patterns compared to control subjects.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3